Spectrometers

HR4000

User-configured Spectrometers are for those who wish to select components and options in their spectrometer, from the wavelength range and grating type to the size of the entrance aperture and type of coatings on the detector.

- 14 USB4000 Plug-and-Play Spectrometer
- 15 "USB" Optical Bench Options
- 20 HR2000+ High-speed High-Resolution Spectrometer
- 21 HR4000 High-resolution Spectrometer
- 22 "HR"-series Optical Bench Options
- 26 QE65000 Scientific-grade Spectrometer
- 27 "QE" Optical Bench Options
- 30 NIR-512 Near-infrared Spectrometer
- 30 NIR256 Extended-range NIR Spectrometers
- 32 "NIR"-series Optical Bench Options

Q

Overview: Spectrometers

We Have Your Spectrometer!

Since we introduced the world's first miniature spectrometer 15 years ago, we've sold more than 85,000 spectrometers and enabled thousands of applications. We pioneered the notion of flexible, modular spectroscopy, making it possible for users in many industries to configure systems for very different applications.

For those who wish to select the components in their spectrometer, we offer a complete range of options. You can make it your way:

- The size of your entrance aperture helps determine how much light enters your optical bench and is a factor in determining optical resolution. We have six sizes of entrance apertures.
- Our filters block second- and third-order effects or balance color.
- You can opt to install standard collimating and focusing mirrors or SAG+ mirrors, which increase reflectance and sensitivity.
- We offer 14 different gratings. Your choice helps determine your resolution and wavelength range.
- An optional collection lens increases light-collection efficiency.
- Our OFLV filters precisely block second- and third-order light from reaching specific detector elements.
- A UV upgrade enhances the spectrometer's performance in the UV.

Our Applications Scientists have configured thousands of spectrometer setups. Simply tell us what you want to measure and why and we'll configure the optimum system for your application.

Detector Type

CCD Detectors

We use a 3648-pixel CCD-array detector from Toshiba in both our "USB" and "HR" optical benches that's ideal for general-purpose applications. The Sony ILX511 is a 2048-pixel linear CCD-array detector that's still used in a couple of our specialized spectrometer offerings.

Photodiode Detectors

Less-sensitive photodiode detectors provide a high signal-to-noise ratio for applications with high light levels. We use Hamamatsu's \$3903 and \$3904 photodiode silicon linear arrays for our Deep-well Spectrometers.

Back-thinned TE-cooled Detector

The Hamamatsu \$7031-1006 detector in the "QE" optical bench provides high quantum efficiency, fast signal processing speed and a high signal-to-noise ratio. This TE-cooled detector generates virtually no dark noise.

InGaAs Detectors

We use three different Hamamatsu linear array InGaAs detectors in our "NIR" optical bench for general-purpose NIR applications.

Bench Type

General-purpose "USB" Bench

The "USB" optical bench (also called the "S" bench) is ideal for absorbance, reflectance, fluorescence and color measurements. It's a versatile bench that is used in tens of thousands of spectrometers around the world.

High-resolution "HR" Bench

The "HR" optical bench is designed for applications requiring sub-angstrom optical resolution, such as laser characterization and atomic emission spectroscopy.

Scientific-grade "QE" Bench

The "QE" optical bench is designed for demanding applications with low light levels such as Raman and fluorescence.

Near-Infrared "NIR" Bench

The "NIR" optical bench is designed for applications that require sensitivity in the NIR region, such as moisture analysis, tunable laser wavelength characterization and general NIR spectroscopy.

Spectrometer Type

Spectrometers

You select the optical bench options, such as the grating, entrance aperture size, detector, wavelength range and more to create the optimum spectrometer for your application.

Spectrometer Systems & Setups

Systems are turnkey spectrophotometers where all the components are included in one integrated enclosure. Setups provide a list of tools necessary for an application. Both Systems and Setups include a spectrometer, the necessary sampling accessories, a light source and software. Some spectrometers are preset with a grating, wavelength range and other bench accessories for specific measurement types such as fluorescence. You still specify other components, such as light sources and sampling accessories.

Spectrometer Comparison Chart

This table outlines the specifications of our most popular user-configured spectrometers. Please refer to specific product pages for more detailed information.

Specifications	USB4000 p. 14	HR2000+ p. 20	HR4000 p. 21	QE65000 p. 26
PHYSICAL				
Dimensions (in mm):	89.1 x 63.3 x 34.4	148.6 x 104.8 x 45.1	148.6 x 104.8 x 45.1	182 x 110 x 47
Weight:	190 grams	570 grams	570 grams	1050 grams
DETECTOR				
Detector:	Toshiba TCD1304AP linear	Sony ILX511 linear silicon CCD	Toshiba TCD1304AP linear	Hamamatsu S7031-1006 back-
	CCD array	array	CCD array	thinned area CCD
Detector range:	200-1100 nm	200-1100 nm	200-1100 nm	200-1100 nm
Pixels:	3648 pixels	2048 pixels	3648 pixels	1024 x 58 (1044 x 64 total)
Pixel size:	8 μm x 200 μm	14 μm x 200 μm	8 μm x 200 μm	24.6 µm square size
Pixel well depth:	~100,000 electrons	~62,500 electrons	~100,000 electrons	300,000 electrons/well ~1.5 million electrons/column
Sensitivity:	400 nm: 130 photons/count 600 nm: 60 photons/count	400 nm: 75 photons/count 600 nm: 41 photons/count	400 nm: 130 photons/count 600 nm: 60 photons/count	22 electrons/count for all wavelengths 250 nm: 26 photons/count
OPTICAL BENCH				·
Design:	f/4, Asymmetrical crossed	f/4, Symmetrical crossed	f/4, Symmetrical crossed	f/4, Symmetrical crossed
-	Czerny-Turner	Czerny-Turner	Czerny-Turner	Czerny-Turner
Focal length (input):	42 mm	101.6 mm	101.6 mm	101.6 mm
Focal length (output):	68 mm	101.6 mm	101.6 mm	101.6 mm
Entrance aperture:	5, 10, 25, 50, 100, or	5, 10, 25, 50, 100 or	5, 10, 25, 50, 100 or	5, 10, 25, 50, 100 or
	200 µm wide slits or fiber	200 µm wide slits or fiber	200 µm wide slits or fiber	200 µm wide slits or fiber
Grating options:	14 gratings, UV through	14 gratings, UV through	14 gratings, UV through	14 gratings, UV through
0.1	Shortwave NIR	Shortwave NIR	Shortwave NIR	Shortwave NIR
HC-1 grating option:	No	No	Yes. HC-1 provides 200-	Yes, HC1-QE provides
3 4 3 4			1050 nm range (best efficiency)	200-950 nm range
Detector collection lens:	Yes. L4	Yes, L2	Yes. L4	No
OFLV filters:	OFLV-200-850	No	OFLV-200-1100	OFLV-QE
	OFLV-350-1000			
Order-sorting filters:	Longpass OF-1 filters	Longpass OF-1 filters	Longpass OF-1 filters	Longpass OF-1 filters
Fiber optic connector:	SMA 905 to 0.22 numerical	SMA 905 to 0.22 numerical	SMA 905 to 0.22 numerical	SMA 905 to 0.22 numerical
	aperture single-strand fiber	aperture single-strand fiber	aperture single-strand fiber	aperture single-strand fiber
SPECTROSCOPIC				
Wavelength range:	Grating dependent	Grating dependent	Grating dependent	Grating dependent
Optical resolution:	~0.3-10.0 nm FWHM	~0.035-6.8 nm FWHM	~0.02-8.4 nm FWHM	~0.14-7.7 nm FWHM
Signal-to-noise ratio:	300:1 (at full signal)	250:1 (at full signal)	300:1 (at full signal)	1000:1 (at full signal)
A/D resolution:	16 bit	14 bit	14 bit	16 bit
Dark noise:	50 RMS counts	12 RMS counts	12 RMS counts	2.5 RMS counts
Dynamic range:	2 x 10 ⁸ (system); 1300:1 for a	2 x 10 ⁸ (system); 1300:1 for a	2 x 10 ⁸ (system); 1300:1 for a	7.5 x 10 ⁹ (system); 25000:1 for
, ,	single acquisition	single acquisition	single acquisition	a single acquisition
Integration time:	3.8 ms to 10 seconds	1 ms to 20 seconds	3.8 ms to 10 seconds	8 ms to 15 minutes
Stray light:	<0.05% at 600 nm	<0.05% at 600 nm	<0.05% at 600 nm	<0.08% at 600 nm
,	<0.10% at 435 nm	<0.10% at 435 nm	<0.10% at 435 nm	<0.4% at 435 nm
Corrected linearity:	>99.8%	>99.8%	>99.8%	>99.8%
ELECTRONICS				
Power consumption:	250 mA @ 5 VDC	450 mA @ 5 VDC	450 mA @ 5 VDC	500 mA @ 5 VDC no TE cool
Data transfer speed:	Full spectrum to memory every	Full spectrum to memory every	Full spectrum to memory every	Full spectrum to memory every
	5 ms with USB 2.0 port	1 ms with USB 2.0 port	4 ms with USB 2.0 port	8 ms with USB 2.0 port
	18 ms with USB 1.1 port	15 ms with USB 1.1 port	18 ms with USB 1 1 port	8 ms with USB 1.1 port
		200 ms with serial port		
Inputs/Outputs:	Ves 8 onboard digital user-	Yes 10 onboard digital user	Ves 10 ophoard digital user	Ves 10 ophoard digital user-
inputs/outputs.	programmable GPIOs	programmable GPIOs	programmable GPIOs	programmable GPIOs
Analog channels:	No	Yes one 13-bit analog input	Ves one 13-bit analog input	No
Analog channels.	110	and one 9-bit analog output	and one 9-bit analog output	NO
Trigger modes:	4 modes	4 modes	4 modes	4 modes
Auto nulling:	Yes	Yes	Yes	Yes
Strobe functions:	Yes	Yes	Yes	No
Gated delay feature:	Yes	Yes	No	Yes
COMPUTER	100	100	110	100
Operating systems:	Windows 98/Me/2000/XP Mac	Windows 98/Me/2000/XP Mac	Windows 98/Me/2000/XP Mac	Windows 98/Me/2000/XP Mac
oporating bysteme.	OS X and Linux when using the	OS X and Linux when using the	OS X and Linux when using the	OS X and Linux when using the
	USB port:	USB nort:	USB port:	LISB port:
	Any 32-bit Windows OS when	Any 32-bit Windows OS when	Any 32-bit Windows OS when	Any 32-bit Windows OS when
	using the serial port	using the serial port	using the serial port	using the serial port
Computer interfaces:	LISB 2.0 @ 480 Mbps	USB 2.0 @ 480 Mbre	LISB 2.0 @ 480 Mbps	LISB 2 0 @ 480 Mbne
Computer interfaces.	(LISB 1.1 compatible):	(USB 1.1 compatible)	(LISB 1.1 compatible)	RS-232 (2-wire) @ 115.2 K
	RS-232 (2-wire) @ 115.2 K	RS-232 (2-wire) @ 115.2 K	RS-232 (2-wire) @ 115.2 K	haud
	haud	haud	haud	bauu
Peripheral interfaces:	SPI (3 Wire):	SPI (3 Wire):	SPI (3 Wire):	SPI (3 wire):
r enprierar interraces.	I ² C inter-integrated circuit	I ² C inter-integrated circuit	I ² C inter-integrated circuit	I ² C inter-integrated circuit

 \bigcirc

 \bigcirc

USB4000 Plug-and-Play Spectrometer

In this setup, a USB4000 is configured for fluorescence. A PX-2 Pulsed Xenon Light Source provides the excitation via optical fiber and a CUV-FL-DA Directattach Cuvette Holder holds the sample and redirects light energy directly into the USB4000 Spectrometer. A filter, such as one of our LVFs, are often used to block excitation wavelengths.

Specificatio	
opecification	
PHYSICAL	
Dimensions (in mm):	89.1 x 63.3 x 34.4
Weight:	190 grams
DETECTOR	
Detector:	Toshiba TCD1304AP linear CCD array (page 17)
Detector range:	200-1100 nm
Pixels:	3648 pixels
Pixel size:	8 µm x 200 µm
Pixel well depth:	~100,000 electrons
Sensitivity:	130 photons/count at 400 nm;
	60 photons/count at 600 nm
OPTICAL BENCH	
Design:	f/4, Asymmetrical crossed Czerny-Turner
Focal length:	42 mm input; 68 mm output
Entrance aperture:	5, 10, 25, 50, 100, or 200 µm wide slit or fiber (page 15)
Grating options:	14 gratings, UV through Shortwave NIR (page 16)
Fiber optic connector:	SMA 905 to 0.22 numerical aperture single-strand fiber
SPECTROSCOPIC	
Wavelength range:	Grating dependent
Optical resolution:	~0.3-10.0 nm FWHM
Signal-to-noise ratio:	300:1 (at full signal)
A/D resolution:	16 bit
Dark noise:	50 RMS counts
Dynamic range:	2 x 10 ⁸ (system); 1300:1 for a single acquisition
Integration time:	3.8 ms to 10 seconds
Stray light:	<0.05% at 600 nm; <0.10% at 435 nm
Corrected linearity:	>99.8%
ELECTRONICS	
Power consumption:	250 mA @ 5 VDC
Data transfer speed:	Full spectrum to memory every 5 ms with USB 2.0 port.
	18 ms with USB 1.1 port
Inputs/Outputs:	Yes. 8 onboard digital user-programmable GPIOs
Analog channels:	No
Trigger modes:	4 modes
Strobe functions:	Yes
COMPUTER	
Operating systems:	Windows 98/Me/2000/XP, Mac OS X and Linux with
oporating oporotion.	USB port: Any 32-bit Windows OS with serial port
Computer interfaces:	USB 2.0.@ 480 Mbps: RS-232 (2-wire) @ 115.2 K baud
Peripheral interfaces:	SPI (3-wire): I ² C inter-integrated circuit

We've sold over 85,000 spectrometer channels for thousands of applications, and we've used that experience to make the most flexible, versatile and cost-effective spectrometer ever built.

World's Most Popular Spectrometer Just Got Better

We redesigned the USB4000 -- the most popular spectrometer in the world -- to include an advanced detector and powerful high-speed electronics. The USB4000 features a 16-bit A/D, four triggering options, a dark-level correction during temperature changes, and a 22-pin connector with eight userprogrammable GPIOs. What's more, the USB4000 interfaces to computers with Linux, Mac or Windows operating systems. The modular USB4000 is responsive from 200-1100 nm and can be configured with various Ocean Optics optical bench accessories, light sources and sampling optics to create application-specific systems for thousands of absorbance, reflection and emission applications.

Electronic Advancements

The USB4000 Spectrometer is distinguished by its enhanced electronics: 16-bit A/D resolution with auto nulling feature (an enhanced electrical dark-signal correction); EEPROM storage of calibration coefficients for simple spectrometer start-up; 8 programmable GPIO signals for controlling peripheral devices; and an electronic shutter for spectrometer integration times as fast as 3.8 milliseconds -- a handy feature to prevent detector saturation. In addition, the USB4000 has signal-to-noise of 300:1 and optical resolution (FWHM) ranging from 0.03-8.4 nm (depending on your grating and entrance aperture selection).

Streamlined Start-up Software & Hot Swapping

The USB4000 interfaces to a computer via USB 2.0. Data unique to each spectrometer is programmed into a memory chip on the USB4000; SpectraSuite Spectroscopy Operating Software reads these values for easy setup and hot swapping among computers, whether they run on Linux, Mac or Windows operating systems. When connected to a computer via USB, the USB4000 draws its power from the computer. With its small-footprint design, plug-and-play convenience, advanced electronics and powerful detector, the USB4000 has succeed the USB2000 as the most frequently specified fiber optic spectrometer in the world.

USB4000:	\$2,199
SPECTRASUITE:	\$199

Spectrometers

()

What makes the USB4000 Spectrometer so special are the options that allow you to configure the bench for your application. Our Applications Scientists can help you choose the optimum components, or you can follow this guide to choose an entrance aperture size, detector accessories, filters, a grating and more. The diagram below shows how light moves through the asymmetrical crossed Czerny-Turner optical bench, which has no moving parts that can wear or break; all components specified are fixed in place at the time of manufacture.

Components of the USB4000 Optical Bench

1 SMA 905 Connector

Light from a fiber enters the optical bench through the SMA 905 Connector. The SMA 905 bulkhead provides a precise locus for the end of the optical fiber, fixed slit, absorbance filter and fiber clad mode aperture.

2 Fixed Entrance Slit: specify slit size

Light passes through the installed slit, which acts as the entrance aperture. Slits come in various widths from 5 μm to 200 μm . The slit is fixed in the SMA 905 bulkhead to sit against the end of a fiber.

3 Longpass Absorbing Filter: optional

If selected, an absorbance filter is installed between the slit and the clad mode aperture in the SMA 905 bulkhead. The filter is used to block second- and thirdorder effects or to balance color.

4 Collimating Mirror: specify standard or SAG+

The collimating mirror is matched to the 0.22 numerical aperture of our optical fiber. Light reflects from this mirror, as a collimated beam, toward the grating. You can opt to install a standard mirror or a UV absorbing SAG+ mirror.

5 Grating & Wavelength Range: specify grating & starting wavelength We install the grating on a platform that we then rotate to select the starting wavelength you've specified. Then we permanently fix the grating in place to eliminate mechanical shifts or drift.

6 Focusing Mirror: specify standard or SAG+

This mirror focuses first-order spectra on the detector plane. Both the collimating and focusing mirrors are made in-house to guarantee the highest reflectance and the lowest stray light possible. You can opt to install a standard or SAG+ mirror.

7 L4 Detector Collection Lens: optional

This cylindrical lens, made in-house to ensure aberration-free performance, is fixed to the detector to focus the light from the tall slit onto the shorter detector elements. It increases light-collection efficiency.

B Detector

We offer a 3648-element Toshiba TCD1304AP linear CCD array detector. Each pixel responds to the wavelength of light that strikes it. Electronics bring the complete spectrum to the software.

9 OFLV Variable Longpass Order-sorting Filter: optional Our proprietary filters precisely block second- and third-order light from reaching specific detector elements.

10 UV4 Detector Upgrade: optional

When selected, the detector's standard BK7 window is replaced with a quartz window to enhance the performance of the spectrometer for applications <340 nm.

SMA 905 Connector

A precision SMA 905 Connector aligns to the spectrometer's entrance slit and ensures concentricity of the fiber. For an upgrade fee that includes the cost of the custom connector and labor, we will replace the standard SMA 905 Connector with a different connector of your choice. We also offer connector adapters, such as an SMA-to-ST Adapter and an SMA-to-FC Adapter. Please call for details on connectors and adapters.

Fixed Entrance Slit

Another option available with a USB4000 user-configured spectrometer is the size of the entrance aperture. Entrance slits are rectangular apertures, 1-mm tall and various widths from 5 μ m to 200 μ m, with the width determining the amount of light entering the bench. A slit is permanent; it only can be changed by our technicians. You can opt against having a slit, in which case the diameter of the fiber connected to the spectrometer determines the size of the entrance aperture.

Slit Description		Pixel Resolution	Price
SLIT-5	5-µm wide x 1-mm high	~5.3 pixels	\$150
SLIT-10	10-µm wide x 1-mm high	~5.7 pixels	\$150
SLIT-25	25-µm wide x 1-mm high	~7.5 pixels	\$150
SLIT-50	50-µm wide x 1-mm high	~11.6 pixels	\$150
SLIT-100	100-µm wide x 1-mm high	~21 pixels	\$150
SLIT-200	200-µm wide x 1-mm high	~42 pixels	\$150

A slit is installed on the inside edge of the bulkhead of an SMA 905 Connector.

Tel: 727.733.2447 • Email: Info@OceanOptics.com

15

 \mathbf{O}

14

Longpass Absorbing Filter

We offer longpass absorbing or blocking filters; each filter has a transmission band and a blocking band to restrict radiation to a certain wavelength region for eliminating second- and third-order effects. These filters are installed permanently between the slit and the clad mode aperture in the bulkhead of the SMA 905 Connector.

Collimating	&	Focusing	Mirrors
-------------	---	----------	---------

You can replace standard aluminum-coated reflective mirrors with our proprietary, UV-absorbing SAG+ Mirrors, which increase reflectance in the VIS-NIR and, in turn, increase the sensitivity of the spectrometer. SAG+ Mirrors are often specified for fluorescence. These mirrors also absorb nearly all UV light, which reduces the effects of excitation scattering in fluorescence measurements. Unlike typical silver-coated mirrors, the SAG+ mirrors won't oxidize. They have excellent reflectivity -more than 95% across the VIS-NIR.

SAG+UPG: \$250

Choosing a Grating & Wavelength Range

Wide Selection Allows Flexibility

You choose from among 14 gratings for each spectrometer. • With each grating, you consider its groove density (which helps determine the resolution), its spectral range (which helps determine the wavelength range) and its blaze wavelength (which helps determine the most efficient range).

Performance & Stability

Instead of the gratings rotating as they do in instruments such as scanning monochromators, our gratings are permanently fixed in place at the time of manufacture to ensure long-term performance and stability. (See page 18 for Grating Efficiency Curves.) A grating must be specified for each spectrometer. We offer ruled and holographic diffraction gratings. Both are polymer replicas of master gratings. There are trade-offs between these gratings: holographic gratings produce less stray light while ruled gratings are more reflective, resulting in higher sensitivity.

Grating Selection Chart

- The Groove Density (mm⁻¹) of a grating determines its dispersion, while the angle of the groove determines the most efficient region of the spectrum. The greater the groove density, the better the optical resolution possible, but the more truncated the spectral range.
- The Spectral Range is the dispersion of the grating across the linear array. The spectral range (bandwidth) is a function of the groove density and does not change. When you choose a starting wavelength for a spectrometer, you add its spectral range to the starting wavelength to determine the wavelength range.
- For ruled gratings, the **Blaze Wavelength** is the peak wavelength in an efficiency curve. For holographic

gratings, it is the most efficient wavelength region.

The **Best Efficiency** region is the range where efficiency is >30%. In some cases, gratings have a greater spectral range than is efficiently diffracted. For example, Grating #1 has a 650 nm spectral range, but is most efficient from 200-575 nm. In this case, wavelengths >575 nm will have lower intensity due to the the grating's reduced efficiency.

umber	Use	Density	Range	Wavelength	(>30%)
1	UV	600	650 nm	300 nm	200-575 nm
2	UV-VIS	600	650 nm	400 nm	250-800 nm
3	VIS-Color	600	650 nm	500 nm	350-850 nm
4	NIR	600	625 nm	750 nm	530-1100 nm
5	UV-VIS	1200	300 nm	Holographic UV	200-400 nm
6	NIR	1200	200-270 nm	750 nm	500-1100 nm
7	UV-VIS	2400	100-140 nm	Holographic UV	200-500 nm
8	UV	3600	50-75 nm	Holographic UV	290-340 nm
9	VIS-NIR	1200	200-270 nm	Holographic VIS	400-800 nm
10	UV-VIS	1800	100-190 nm	Holographic UV	200-635 nm
11	UV-VIS	1800	120-160 nm	Holographic VIS	320-720 nm
12	UV-VIS	2400	50-120 nm	Holographic VIS	250-575 nm
13	UV-VIS-NIR	300	1700 nm	500 nm	300-1100 nm
14	NIR	600	625 nm	1000 nm	650-1100 nm
	1 2 3 4 5 6 7 8 9 10 11 12 13 14	Imperior Ose 1 UV 2 UV-VIS 3 VIS-Color 4 NIR 5 UV-VIS 6 NIR 7 UV-VIS 8 UV 9 VIS-NIR 10 UV-VIS 11 UV-VIS 12 UV-VIS-NIR 13 UV-VIS-NIR 14 NIR	Image Ose Density 1 UV 600 2 UV-VIS 600 3 VIS-Color 600 4 NIR 600 5 UV-VIS 1200 6 NIR 1200 7 UV-VIS 2400 8 UV 3600 9 VIS-NIR 1200 10 UV-VIS 1800 11 UV-VIS 2400 13 UV-VIS-NIR 300 14 NIR 600	Index Ose Density Range 1 UV 600 650 nm 2 UV-VIS 600 650 nm 3 VIS-Color 600 650 nm 4 NIR 600 625 nm 5 UV-VIS 1200 300 nm 6 NIR 1200 200-270 nm 7 UV-VIS 2400 100-140 nm 8 UV 3600 50-75 nm 9 VIS-NIR 1200 200-270 nm 10 UV-VIS 1800 100-190 nm 11 UV-VIS 1800 120-160 nm 12 UV-VIS 2400 50-120 nm 13 UV-VIS-NIR 300 1700 nm 14 NIR 600 625 nm	Index Ose Density Range Waverength 1 UV 600 650 nm 300 nm 2 UV-VIS 600 650 nm 400 nm 3 VIS-Color 600 650 nm 500 nm 4 NIR 600 625 nm 500 nm 5 UV-VIS 1200 300 nm Holographic UV 6 NIR 1200 200-270 nm 750 nm 7 UV-VIS 2400 100-140 nm Holographic UV 8 UV 3600 50-75 nm Holographic UV 9 VIS-NIR 1200 200-270 nm Holographic UV 10 UV-VIS 1800 100-140 nm Holographic UV 9 VIS-NIR 1200 200-270 nm Holographic VIS 10 UV-VIS 1800 100-190 nm Holographic VIS 11 UV-VIS 1800 120-160 nm Holographic VIS 12 UV-VIS 2400 50-120 nm

()

ltem	Description	Price
OF1-WG305	Longpass filter; transmits light >305 nm	\$50
OF1-GG375	Longpass filter; transmits light >375 nm	\$50
OF1-GG475	Longpass filter; transmits light >475 nm	\$50
OF1-OG515	Longpass filter; transmits light >515 nm	\$50
OF1-OG550	Longpass filter; transmits light >550 nm	\$50
OF1-OG590	Longpass filter; transmits light >590 nm	\$50

16

()

L4 Detector Collection Lens

This cylindrical lens, made in-house to ensure aberration-free performance, is fixed to the detector's window to focus the light from the tall slit onto the shorter detector elements. It increases light-collection efficiency and reduces stray light. It also is useful in a configuration with a large-diameter fiber for low light-level applications. At right is a detector with the L4 lens.

L4 Detector Collection Lens: \$150

Oetector: 3648-element Linear CCD Array

In each USB4000, we install the Toshiba TCD1304AP linear CCD array detector. In the USB2000, the USB4000's predecessor, we used the Sony ILX511 detector. Both are linear silicon CCD arrays, with an effective range of 200-1100 nm, and with the same dynamic range (1300:1).

There are some differences between the Toshiba detector and the Sony detector. For example, since the Toshiba's pixels are only 8 μ m wide instead of 14 μ m wide, the sensitivity for a Toshiba pixel seems to be ~60% (8 μ m/14 μ m) that of a Sony pixel (see graph at right). However, on a per-unit area basis, the sensitivity is about the same since the Toshiba has 3648 pixels compared with the Sony's 2048; the total signal is the same. Because the Toshiba detector has an electronic shutter, you can almost never have too much light; the shutter prevents the detector from saturating.

Detector with OFLV Filter

Our OFLV Variable Longpass Order-sorting Filters are applied to the detector's window to eliminate secondand third-order effects. We use patented coating technology to apply the filter onto the substrate. In fact, we are the only miniature spectrometer manufacturer to offer "clean" first-order spectra.

Detector with UV4 Detector Window Upgrade When you specify a detector with the UV4 Detector Window Upgrade, we replace the detector's standard BK7 window with a quartz window to enhance the

spectrometer's performance from 200-340 nm.

Toshiba T	CD1304AP Specifications
Detector:	Toshiba TCD1304AP linear CCD array
Detector range:	200-1100 nm
Pixels:	3648 pixels
Pixel size:	8 μm x 200 μm
Pixel well depth:	~100,000 electrons
Sensitivity:	400 nm: 130 photons/count, 600 nm: 60 photons/count
Maximum pixel rate:	Rate at which pixels are digitized is 1 MHz

Detector	Description	Price
DET4-VIS	Toshiba TCD1304AP Detector installed into a USB4000 User-Configured Spectrometer; best for systems	Free
	with wavelength ranges above 400 nm	
DET4-UV	Toshiba TCD1304AP Detector with UV4 Detector Window Upgrade installed into a USB4000 User-	\$150
	Configured Spectrometer; best for systems with wavelength ranges in the UV	
DET4-350-1000	Toshiba TCD1304AP Detector with OFLV-350-1000 Variable Longpass Order-sorting Filter installed into a	\$150
	USB4000 User-Configured Spectrometer; best when using Grating #2, #3 or #4	
DET4-200-850	Toshiba TCD1304AP Detector with UV4 Detector Window Upgrade and OFLV-200-850 Variable Longpass	\$300
	Order-sorting Filter installed into a USB4000 Spectrometer; best when using Grating #1 or #2	

 $(\mathbf{0})$

 \mathbf{O}

Grating Efficiency Curves

Below are the Grating Efficiency Curves for gratings with groove densities of 600, 1200, 1800 and 2400 mm⁻¹. See curves for all of our gratings at OceanOptics.com/Technical/GratingCharts.asp.

Predicted Ranges & Resolution

Here are a series of graphs to demonstrate the range and optical resolution (FWHM) of your USB4000 Spectrometer with a 25 μ m slit. See our website for additional graphs of ranges and resolutions for every slit size.

Spectrometers

USB4000 Direct-attach Accessories

USB-DT Deuterium Tungsten Light Source

The USB-DT Deuterium Tungsten Light Source is our most versatile combination UV-VIS lamp. Use the USB-DT as a stand-alone unit with any spectrometer, stack it with a USB4000 Spectrometer, or combine it with a "breakout box" accessory and an "HR"-series or QE65000 Spectrometer for software control of lamp functions. This compact source is about the size of a deck of cards, provides stable, broadband output from 200-2000 nm, and requires a simple 5-volt wall transformer to operate. See page 124 for details.

USB-DT: \$1,499

USB-ISS-UV-VIS Integrated Sampling System for Cuvettes

The USB-ISS-UV-VIS is a direct-attach sample holder and deuterium tungsten light source (200-1100 nm) for measuring absorbance. This sampling system allows you to control both the intensity of the tungsten bulb and the shutter via software. The USB-ISS-UV-VIS requires an external power supply (included). See page 92 for more.

USB-ISS-UV-VIS: \$1,499

USB-ISS-VIS Integrated Sampling System for Cuvettes

The USB-ISS-VIS is a direct-attach sample holder and violet LED-boosted tungsten light source (390-900 nm) combination for measuring relative absorbance. The light source boosts signal in the blue and provides over 10,000 hours of use. See page 92 for full specifications.

USB-ISS-VIS: \$499

USB-ISS-T Integrated Sampling System for Test Tubes

The USB-ISS-T is a direct-attach sample holder and violet LED-boosted tungsten light source (390-900 nm) combination for measuring absorbance in 12-mm outer diameter test tubes. The sampling optics combine a diffuse source with a collimated input to the spectrometer to eliminate optical artifacts in the test tubes. See page 92 for specifications.

USB-ISS-T: \$499

USB-LS-450 Pulsed Blue LED Module

The USB-LS-450 is an LED module designed for fluorescence measurements in the lab or field, or as part of an Oxygen Sensor system. In addition, the USB-LS-450 has a port for attaching a 100 ohm RTD temperature sensor and onboard memory for storing temperature and oxygen calibration coefficients. See page 131 for details. USB-LS-450: \$549

USB-FHS Filter Holder System

The USB-FHS is a filter holder and violet LED-boosted tungsten light source for measuring filters and other samples up to 18-mm thick. The USB-FHS is optimized for 390-900 nm and attaches to the USB4000 via a mounting plate.

USB-FHS: \$499

 \bigcirc

HR2000+ High-speed Spectrometer

This power-up data for our LS-1 Tungsten Halogen Light Source was taken by an HR2000+ at 2-millisecond intervals. The graph shows the tremendous amount of data generated with the HR2000+'s acquisition rate speed of 1000 spectra per second.

In this setup, a DH2000 Deuterium Light Source provides light via optical fiber to a CUV-10 Cuvette Holder for 10-cm sample cells. A second optical fiber collects the light and sends it to the HR2000+.

apecification	18
PHYSICAL	
Dimensions:	148.6 mm x 104.8 mm x 45.1 mm
Weight:	570 g
DETECTOR	
Detector:	Sony ILX511 linear silicon CCD array (page 24)
Detector range:	200-1100 nm
Pixels:	2048 pixels, pixel size of 14 µm x 200 µm
Sensitivity:	75 photons/count at 400 nm;
	41 photons/count at 600 nm
OPTICAL BENCH	
Design:	f/4, Symmetrical crossed Czerny-Turner
Focal length:	101.6 mm input, 101.6 mm output
Entrance aperture:	5, 10, 25, 50, 100 or 200 μm wide slits (page 22) or fiber
Grating options:	14 gratings, UV through Shortwave NIR (page 23)
Fiber optic connector:	SMA 905 to 0.22 numerical aperture single-strand fiber
SPECTROSCOPIC	
Wavelength range:	Grating dependent
Optical resolution:	~0.035-6.8 nm FWHM
Signal-to-noise ratio:	250:1 (at full signal)
Dark noise:	12 RMS counts
Dynamic range:	2 x 10 ⁸ (system); 1300:1 for a single acquisition
Integration time:	1 ms to 20 seconds
ELECTRONICS	
Power consumption:	450 mA @ 5 VDC
Data transfer speed:	Full spectrum to memory every 1 ms with USB 2.0 port,
	15 ms with USB 1.1 port, 200 ms with serial port
Inputs/Outputs:	Yes, 10 onboard digital user-programmable GPIOs*
Analog channels:	One 13-bit analog input, one 9-bit analog output
COMPUTER	
Operating systems:	Windows 98/Me/2000/XP, Mac OS X and Linux with
	USB port; any 32-bit Windows OS with serial port
Computer interfaces:	USB 2.0 @ 480 Mbps; RS-232 (2-wire) @ 115.2 K baud
Peripheral interfaces:	SPI (3-Wire), I ² C inter-integrated circuit

* Programming the GPIOs requires SpectraSuite, OmniDriver or one of our other device drivers. See pages 80-82 for details.

Dynamic Electronics Enhances Control

The HR2000+ Spectrometer integrates a powerful analog-todigital (A/D) converter, programmable electronics and a high-resolution optical bench. This innovative combination produces our fastest spectrometer yet and provides resolution to 0.035 nm (FWHM).

1,000 Full Spectra/Second

The HR2000+ utilizes an onboard, 2-MHz A/D converter, which allows you to capture and transfer one full spectrum into memory every millisecond when the spectrometer is interfaced to a PC via the USB port.

Programmable Microcontroller

The HR2000+ has an onboard programmable microcontroller that provides flexibility in controlling the spectrometer and accessories. Through a new 30-pin connector, you can implement all operating parameters in the software, such as controlling external light sources, creating processes and routines and retrieving data from external devices. The HR2000+ gives you access to 10 user-programmable digital I/Os for interfacing to other equipment; one analog input and one analog output; and a pulse generator for triggering other devices. (Programming the I/Os requires SpectraSuite Spectroscopy Operating Software.)

"HR" Optical Bench

The HR2000+ is responsive from 200-1100 nm, but its specific range, resolution and sensitivity depend on your "HR" Optical Bench options. You select the grating, wavelength range, mirror coating, detector window and entrance aperture size. Choose from hundreds of accessories to create application-specific systems.

High-resolution Applications

The HR2000+ is ideal for applications where fast reactions need to be monitored and high resolution is necessary, such as protein dynamics. For solution chemistry or color measurements, the USB4000 is more likely to fill your requirements.

Plug-and-Play Operation

The HR2000+ interfaces to a PC, PLC or other embedded controllers via USB 2.0 or serial port. When connected to a PC via the USB port, the HR2000+ does not require an external power supply -- the spectrometer draws its power from the PC. When operating via the serial port, the HR2000+ requires a power supply (not included). Data unique to each spectrometer are programmed into a memory chip on the HR2000+; software reads these values for easy setup and hot swapping among PCs.

HR2000+: \$3,499

Spectrometers

HR4000 High-resolution Spectrometer

0.02 nm Optical Resolution (FWHM) Possible

The HR4000 Spectrometer is our next-generation highresolution spectrometer. The HR4000 has a 3648-element CCD-array detector from Toshiba that enables optical resolution as precise as 0.02 nm (FWHM). The HR4000 is responsive from 200-1100 nm, but the specific range and resolution depend on your grating and entrance slit choices (see pages 22-24 for options). This novel combination of optics and electronics is ideal for applications such as characterizing lasers, measuring gas absorbance, and determining atomic emission lines.

Electronic Shutter Prevents Saturation

Integration Time is a setting in our software that is specified by the user. It's analogous to the shutter speed of a camera: the value specified for the integration time is the amount of time the detector "looks" at the incoming photons. Because the Toshiba detector has an electronic shutter, you can specify, via software, minimum integration times as short as 3.8 milliseconds, which allow you to measure transient events like laser pulses. Also, the ability to integrate the spectrometer for short durations eliminates saturation problems that can occur in high light-level applications such as laser analysis.

One popular application for the HR4000 is laser analysis. A typical setup may look something like this: a laser's beam is directed into the FOIS-1 Integrating Sphere. An optical fiber collects the light and sends it to the HR4000.

Onboard Microcontroller

The HR4000's onboard microcontroller provides you with considerable flexibility in controlling the spectrometer and accessories. Through a 30-pin connector, you can implement all operating parameters in the software: control light sources, create processes, and retrieve information on external objects. You have access to 10 user-programmable digital inputs/outputs for interfacing to other equipment; one analog input and one analog output; and a pulse generator for triggering other devices. (Programming the GPIOs requires SpectraSuite, OmniDriver or one of our other device drivers. See pages 80-82 for details.)

Plug-and-Play USB Operation

The HR4000 interfaces to a PC, PLC or other embedded controllers via USB 2.0 or RS-232 serial port. When using the serial port, the HR4000 requires a single 5-volt power supply (not included). Data unique to each spectrometer are programmed into a memory chip on the HR4000; our spectrometer operating software reads these values for easy setup and hot swapping among PCs. HR4000: \$3,999

an HR4000, Grating H11 and a 5-µm slit.

Specifications

PHYSICAL	
Dimensions:	148.6 mm x 104.8 mm x 45.1 mm
Weight:	570 g
DETECTOR	
Detector:	Toshiba TCD1304AP linear CCD array (page 24)
Detector range:	200-1100 nm
Pixels:	3648 pixels, pixel size of 8 µm x 200 µm
Pixel well depth:	~100,000 electrons
Sensitivity:	130 photons/count at 400 nm; 60 photons/count at 600 nm
OPTICAL BENCH	
Design:	f/4, Symmetrical crossed Czerny-Turner
Focal length:	101.6 mm input, 101.6 mm output
Entrance aperture:	5, 10, 25, 50, 100 or 200 μm wide slits (page 22) or fiber
Grating options:	14 gratings, UV through Shortwave NIR (page 23)
Order-sorting filters:	longpass OF-1 filters and OFLV-200-1100 (page 24)
Fiber optic connector:	SMA 905 to 0.22 numerical aperture single-strand fiber
SPECTROSCOPIC	
Wavelength range:	Grating dependent
Optical resolution:	~0.02-8.4 nm FWHM
Signal-to-noise ratio:	300:1 (at full signal)
Dark noise:	12 RMS counts
Dynamic range:	2 x 10 ⁸ (system); 1300:1 for a single acquisition
Integration time:	3.8 ms to 10 seconds
ELECTRONICS	
Power consumption:	450 mA @ 5 VDC
Data transfer speed:	Full spectrum to memory every 4 ms with USB 2.0 port,
	18 ms with USB 1.1 port
Inputs/Outputs:	Yes, 10 onboard digital user-programmable GPIOs
Analog channels:	One 13-bit analog input, One 9-bit analog output
COMPUTER	
Operating systems:	Windows 98/Me/2000/XP, Mac OS X and Linux with
	USB port; any 32-bit Windows OS using serial port*
Computer interfaces:	USB 2.0 @ 480 Mbps; RS-232 (2-wire) @ 115.2 K baud
Peripheral interfaces:	SPI (3-Wire), I ² C inter-integrated circuit

* You cannot use SpectraSuite if you're interfacing an HR4000 to a PC via RS-232. A Command Set is included for writing your own software.

 \mathbf{O}

Below is a diagram of the "HR" Optical Bench used in HR2000+ and HR4000 High-resolution Spectrometers. It shows how light moves through the symmetrical crossed Czerny-Turner design of the bench. All components in the bench are fixed in place during manufacturing. Not only do you have detector choices with the "HR" bench, you also have a whole host of other options when configuring your High-resolution Spectrometer. You can choose various entrance aperture sizes, detector accessories, filters, gratings and more to optimize your spectrometer.

Components of the "HR" Optical Bench

1 SMA 905 Connector

Light from a fiber enters the optical bench through the SMA 905 Connector. The SMA 905 bulkhead provides a precise locus for the end of the optical fiber, fixed slit, absorbance filter and fiber clad mode aperture.

2 Fixed Entrance Slit: specify slit size

Light passes through the installed slit, which acts as the entrance aperture. Slits are available in widths from 5 µm to 200 µm. Each is permanently fixed to the SMA 905 bulkhead. (Without a slit, a fiber acts as the entrance aperture.)

3 Longpass Absorbance Filter: optional

If selected, an absorbance filter is installed between the slit and the clad mode aperture in the SMA 905 bulkhead. The filter is used to block second- and thirdorder effects or to balance color.

4 Collimating Mirror: specify standard or SAG+

The collimating mirror is matched to the 0.22 numerical aperture of our optical fiber. Light reflects from this mirror, as a collimated beam, toward the grating. You can opt to install a standard mirror or a UV absorbing SAG+ mirror.

5 Grating & Wavelength Range: specify grating & starting wavelength We install the grating on a platform that we then rotate to select the starting wavelength you've specified. Then we permanently fix the grating in place to eliminate mechanical shifts or drift.

6 Focusing Mirror: specify standard or SAG+

This mirror focuses first-order spectra on the detector plane. Both the collimating and focusing mirrors are made in-house to guarantee the highest reflectance and the lowest stray light possible. You can opt for a standard mirror or SAG+ mirror.

7 L2 and L4 Detector Collection Lenses: optional

This cylindrical lens, made in-house to ensure aberration-free performance, is fixed to the detector to focus the light from the tall slit onto the shorter detector elements. It increases light-collection efficiency.

8 Detector: specify Sony or Toshiba detector

We offer two detectors for the "HR" Bench; both are linear CCD arrays. Each pixel responds to the wavelength of light that strikes it. Electronics bring the complete spectrum to the software.

9 OFLV Variable Longpass Order-sorting Filter: optional Our proprietary filters precisely block second- and third-order light from reaching specific detector elements.

10 UV2 and UV4 Detector Upgrades: optional

When selected, the detector's standard BK7 window is replaced with a quartz window to enhance the performance of the spectrometer for applications <340 nm.

SMA 905 Connector

A precision SMA 905 Connector aligns to the spectrometer's entrance slit and ensures concentricity of the fiber. For an upgrade fee that includes the cost of the custom connector and labor, we will replace the standard SMA 905 Connector with a different connector of your choice. We also offer connector adapters, such as an SMA-to-ST Adapter and an SMA-to-FC Adapter. Please call for details on connectors and adapters.

Fixed Entrance Slit

Another option available with "HR" User-configured Spectrometers is selecting the size of the entrance aperture. Entrance slits are rectangular apertures, 1-mm tall and various widths from 5 μ m to 200 μ m, with the width determining the amount of light entering the bench. A slit is fixed in place. Note that the smallest slit achieves the best optical resolution.

A slit is installed on the inside edge of the bulkhead of an SMA 905 Connector.

Slit	Description	HR2000+ Pixel Resolution	HR4000 Pixel Resolution	Price
SLIT-5	5-µm wide x 1-mm high	1.5 pixels	2.0 pixels	\$150
SLIT-10	10-µm wide x 1-mm high	2.0 pixels	3.7 pixels	\$150
SLIT-25	25-µm wide x 1-mm high	2.5 pixels	4.4 pixels	\$150
SLIT-50	50-µm wide x 1-mm high	4.2 pixels	7.4 pixels	\$150
SLIT-100	100-µm wide x 1-mm high	8.0 pixels	14.0 pixels	\$150
SLIT-200	200-µm wide x 1-mm high	15.3 pixels	26.8 pixels	\$150

Longpass Absorbing Filters

We offer longpass absorbing or blocking filters; each filter has a transmission band and a blocking band to restrict radiation to a certain wavelength region for eliminating second- and third-order effects. These filters are installed permanently between the slit and the clad mode aperture in the bulkhead of the SMA 905 Connector.

ltem	Description	Price
OF1-WG305	Longpass filter; transmits light >305 nm	\$50
OF1-GG375	Longpass filter; transmits light >375 nm	\$50
OF1-GG475	Longpass filter; transmits light >475 nm	\$50
OF1-OG515	Longpass filter; transmits light >515 nm	\$50
OF1-OG550	Longpass filter; transmits light >550 nm	\$50
OF1-OG590	Longpass filter; transmits light >590 nm	\$50

Collimating & Focusing Mirrors

Another bench option is to replace the standard aluminum-coated reflective mirrors with our proprietary, UV-absorbing SAG+ Mirrors, which increase reflectance in the VIS-NIR and, in turn, increase the sensitivity of the spectrometer. SAG+ Mirrors are often specified for fluorescence. These mirrors also absorb nearly all UV light, which reduces the effects of excitation scattering in fluorescence measurements. Unlike most silver-coated mirrors, the SAG+ mirrors won't oxidize. See page 16 for a spectral graph illustrating SAG+ reflectivity. SAG+UPG-HR: \$250

Choosing a Grating & Wavelength Range

Wide Selection Allows Flexibility

You choose from among 14 gratings for each spectrometer. With each grating, you consider its groove density (which helps determine the resolution), its spectral range (which helps determine the wavelength range) and its blaze wavelength (which helps determine the most efficient range). Our gratings are permanently fixed in place at the time of manufacture to ensure longterm performance and stability. We offer ruled and holographic diffraction gratings. Both are

Grating Number	Intended Use	Groove Density	Spectral Range	Blaze Wavelength	Best Efficiency (>30%)	
HC1*	UV-NIR	300	200-1100 nm	variable	200-1100 nm	
H1	UV	600	425-445 nm	300 nm	200-575 nm	
H2	UV-VIS	600	415-445 nm	400 nm	250-800 nm	
H3	VIS-Color	600	410-440 nm	500 nm	350-850 nm	
H4	NIR	600	410-430 nm	750 nm	530-1100 nm	
H5	UV-VIS	1200	205-220 nm	holographic: UV	200-400 nm	
H6	NIR	1200	140-195 nm	750 nm	500-1100 nm	
H7	UV-VIS	2400	72-102 nm	holographic: UV	200-500 nm	
H9	VIS-NIR	1200	165-205 nm	holographic: VIS	400-800 nm	
H10	UV-VIS	1800	95-140 nm	holographic: UV	200-635 nm	
H11	UV-VIS	1800	75-135 nm	holographic: VIS	320-800 nm	
H12	UV-VIS	2400	60-100 nm	holographic: VIS	250-575 nm	
H13	UV-VIS-NIR	300	900 nm	500 nm	300-1100 nm	
H14	NIR	600	410-420 nm	1000 nm	650-1100 nm	

polymer replicas of master gratings. There are trade-offs between these gratings: holographic gratings produce less stray light while ruled gratings are more reflective, resulting in higher sensitivity.

Grating Selection Chart

- The **Groove Density** (mm⁻¹) of a grating determines its dispersion, while the angle of the groove determines the most efficient region of the spectrum. The greater the groove density, the better the optical resolution possible, but the more truncated the spectral range.
- The **Spectral Range** is the dispersion of the grating across the linear array. The spectral range (bandwidth) is a function of the groove density and does not change. When you choose a starting wavelength for a spectrometer, you add its spectral range to the starting wavelength to determine the wavelength range.
- For ruled gratings, the Blaze Wavelength is the peak wavelength in an efficiency curve. For holographic gratings, it is the most efficient wavelength region.

The **Best Efficiency** region is the range where efficiency is >30%. In some cases, gratings have a greater spectral range than is efficiently diffracted. For example, Grating #1 has a 650 nm spectral range, but is most efficient from 200-575 nm. In this case, wavelengths >575 nm will have lower intensity due to the the grating's reduced efficiency.

Grating Efficiency Curves for the "HR" bench are the same as those for the USB (see page 18) except for the HC-1 Grating; its curve is shown here. All gratings are free with the purchase

of a spectrometer, except for the HC-1, which is \$600.

L2 or L4 Detector Collection Lens

The cylindrical L2 and L4 Detector Collection Lenses -- made in-house to ensure aberration-free performance -- are fixed to a detector's window to focus the light from the tall slit onto the shorter detector elements. They increase light-collection efficiency and reduce stray light. They are also useful with a large-diameter fiber for low light-level applications. Use the L2 with the Sony detector and the L4 with the Toshiba detector. L2 or L4 Detector Collection Lens: \$150

Detector: 2048-element or 3648-element Linear CCD Array

The HR2000+ utilizes the Sony ILX511 linear silicon CCD array detector. Our next-generation HR4000 High-resolution Spectrometer utilizes the Toshiba TCD1304AP linear CCD array detector, which has some electronic advances over the Sony, such as a user-programmable microcontroller. Both are linear silicon CCD arrays, with an effective range of 200-1100 nm, and with the same dynamic range (1300:1).

There are some differences between the detectors. For example, the Toshiba detector achieves better optical resolution (see the facing page for details). Also, since the Toshiba's pixels are only 8 μ m wide instead of 14 μ m wide, the sensitivity for a Toshiba pixel seems to be ~60% (8 μ m/14 μ m) that of a Sony pixel (see graph at right). However, on a per-unit

2048-element Sony Detector

3648-element

3648-element

Toshiba Detector

Lens

Toshiba Detector

with L4 Collection

area basis, the sensitivity is about the same since the Toshiba has 3648 pixels compared with the Sony's 2048; the total signal is the same. Because the Toshiba detector has an electronic shutter, you can almost never have too much light; the shutter prevents the detector from saturating, making possible analysis of transient events such as laser pulses.

Specifications				
	Sony ILX511 linear silicon CCD array	Toshiba TCD1304AP linear CCD array		
Detector range:	200-1100 nm	200-1100 nm		
Pixels:	2048 pixels	3648 pixels		
Pixel size:	14 μm x 200 μm	8 μm x 200 μm		
Pixel well depth:	~62,500 electrons	~100,000 electrons		
Maximum pixel rate:	Rate at which pixels are digitized is 2 MHz	Rate at which pixels are digitized is 1 MHz		

Detector with OFLV Filter:

Our OFLV Variable Longpass Order-sorting Filters are applied to the detector's window to eliminate second- and third-order effects. We use patented coating technology to apply the filter onto the substrate. In fact, we are the only miniature spectrometer manufacturer to offer "clean" first-order spectra.

Detector with UV2 or UV4 Detector Window Upgrade

When you specify a detector with a UV2 or UV4 Detector Window Upgrade, we replace the detector's standard BK7 window with a quartz window to enhance the spectrometer's performance from 200-340 nm.

Item	Description	Spectrometer	Price
DET4-VIS	Toshiba TCD1304AP Detector installed into a HR4000 User-Configured Spectrometer;	HR4000	Free
	best for systems with wavelength ranges above 400 nm		
DET4-UV	Toshiba TCD1304AP Detector with UV4 Detector Window Upgrade installed into a HR4000	HR4000	\$150
	User Configured Spectrometer; best for systems with wavelength ranges in the UV		
DET4-200-1100	Toshiba TCD1304AP Detector with OFLV-200-1100 Variable Longpass Order-sorting Filter	HR4000	\$400
	and UV4 Detector Window Upgrade installed into a HR4000 User-configured Spectrometer;		
	used with HC1 Grating (\$600)		
DET2-VIS	Sony ILX511 Detector installed into an HR2000+ User-Configured Spectrometer; best for	HR2000+	Free
	systems with wavelength ranges above 400 nm		
DET2-UV	Sony ILX511 Detector with UV2 Detector Window Upgrade installed into an HR2000+	HR2000+	\$150
	User-Configured Spectrometer: best for systems with wavelength ranges in the UV		

(1)

Predicted Ranges & Resolution

These graphs demonstrate the range and resolution of your "HR" Bench Spectrometer with a 5 μ m slit. See our website for additional graphs of ranges and resolutions for every slit size.

 $(\mathbf{0})$

 \mathbf{O}

QE65000 Scientific-grade Spectrometer

with a QE65000 uses the PX-2 Pulsed Xenon Lamp as an excitation source and the CUV-ALL Cuvette Holder for samples. An optical fiber delivers excitation light to the sample holder and read light to the spectrometer. A filter, such as one of our LVFs, would block excitation light from entering the spectrometer

PHYSICAL Dimensions (in mm): 182 x 110 x 47 Weight: 1.18 kg (without power supply)

Weight:	1.18 kg (without power supply)
DETECTOR	
Detector:	Hamamatsu S7031-1006 back-thinned FFT-CCD
Detector range:	200-1100 nm
Pixels:	1024 x 58 (1044 x 64 total); 24.6 µm square size
Pixel well depth:	300,000 electrons/well ~1.5 mill. electrons/column
Sensitivity:	400 nm: 22 electrons/count, 250 nm: 26 photons/count
OPTICAL BENCH	
Design:	f/4, Symmetrical crossed Czerny-Turner
Focal length:	101.6 mm input, 101.6 mm output
Entrance aperture:	5, 10, 25, 50, 100, or 200 μm wide slits (page 27)
Grating options:	14 gratings, UV through Shortwave NIR (page 28)
Fiber optic connector:	SMA 905 to 0.22 numerical aperture single-strand fiber
SPECTROSCOPIC	
Wavelength range:	Grating dependent
Optical resolution:	~0.14-7.7 nm FWHM
Signal-to-noise ratio:	1000:1 (at full signal)
Dark noise:	2.5 RMS counts
Dynamic range:	25000:1 a single acquisition; 7.5 x 10 ⁹ (system)
Integration time:	8 milliseconds to 15 minutes
Stray light:	<0.08% at 600 nm, <0.4% at 435 nm
ELECTRONICS	
Power consumption:	500 mA @ 5 VDC no TE cool;
	3 A @ 5 VDC with TE cool
Data transfer speed:	Full spectrum to memory every 4 ms with USB 2.0
	port, 8 ms with USB 1.1 port
Inputs/Outputs:	10 onboard digital user-programmable GPIOs
TEMPERATURE & THEF	RMOELECTRIC (TE) COOLING
Temperature limits:	0 °C to 50 °C for spectrometer, no condensation
Temperature range:	13 °C maximum range between the high and low
Set point:	Software controlled
Lowest set point:	40 °C below ambient, to -15 °C
Stability:	±0.1 °C of set temperature in <2 minutes
COMPUTER	
Operating systems:	Windows 98/Me/2000/XP, Mac OS X and Linux when
	using the USB port; 32-bit Windows OS when using
	the serial port
Computer interfaces:	USB 2.0 @ 480 Mbps; RS-232 (2-wire) @ 115K baud
Peripheral interfaces:	SPI (3-wire): I ² C inter-integrated circuit

New Scientific-grade Spectrometer

The QE65000 Spectrometer is a unique combination of detector and optical bench technologies that provides users with high spectral response and high optical resolution in one scientific-grade spectrometer package.

Quantum Efficiency to 90%

The Hamamatsu FFT-CCD detector used in the QE65000 provides 90% quantum efficiency (defined as how efficiently a photon is converted to a photo-electron). Most of our other detectors are linear CCDs but with this "2D" area detector, we can bin a vertical row of pixels, which offers significant improvement in the signal-to-noise ratio and signal processing speed of the detector compared with a linear CCD, where signals are digitally added by an external circuit.

Increased System Sensitivity

In our spectrometers with linear CCDs, the slit's width, not its height, regulates the amount of light entering the bench because linear CCDs cannot efficiently collect the light from the entire height of the slit. But in the QE65000, the 2D area detector can better take advantage of the height of the slit and the additional light, greatly improving system sensitivity.

Back-thinned: Great for the UV

Because the detector in the QE65000 is back-thinned (or back-illuminated), it has great native response in the UV and does not require the additional coatings that we typically apply to other detectors for UV applications.

Demanding Low Light-level Applications

The QE65000 Spectrometer is a great option for low-light level applications such as fluorescence, Raman spectroscopy, DNA sequencing, astronomy and thin-film reflectivity. The TE-cooled (down to -15 °C) detector features low noise and low dark signal, which enables low-light-level detection and long integration times from 8 milliseconds to 15 minutes.

Onboard Programming

The QE65000 also has an onboard programmable microcontroller for controlling the spectrometer and accessories. You have access to 10 user-programmable digital inputs/ outputs and a pulse generator for triggering other devices.

QE65000: \$9,999

Components of the "QE" Optical Bench

1 SMA 905 Connector

Light from a fiber enters the optical bench through the SMA 905 Connector. The SMA 905 bulkhead provides a precise locus for the end of the optical fiber, fixed slit, absorbance filter and fiber clad mode aperture.

2 Fixed Entrance Slit: specify slit size

Light passes through the installed slit, which acts as the entrance aperture. Slits are available in widths from 5 µm to 200 µm. Each is permanently fixed to the SMA 905 bulkhead. (Without a slit, a fiber acts as the entrance aperture.)

SMA 905 Connector

A precision SMA 905 Connector aligns to the spectrometer's entrance slit and ensures concentricity of the fiber. For an upgrade fee that includes the cost of a another connector and labor, we will replace the standard SMA 905 Connector with a different connector of your choice.

7 Fixed Entrance Slit

One option available with the user-configured QE65000 Spectrometer is the size of the entrance aperture, with the width determining the amount of light entering the bench. A slit is fixed in place; it only can be changed by our technicians.

Slit	Description	Pixel Resolution	Price
SLIT-5	5-µm wide x 1-mm high	~2.0 pixels	\$150
SLIT-10	10-µm wide x 1-mm high	~2.2 pixels	\$150
SLIT-25	25-µm wide x 1-mm high	~2.6 pixels	\$150
SLIT-50	50-µm wide x 1-mm high	~3.3 pixels	\$150
SLIT-100	100-µm wide x 1-mm high	~4.7 pixels	\$150
SLIT-200	200-µm wide x 1-mm high	~8.9 pixels	\$150

Longpass Absorbing Filters

We offer longpass absorbing or blocking filters; each filter has a transmission band and a blocking band to restrict radiation to a certain wavelength region for eliminating second- and third-order effects. These filters are installed permanently between the slit and the clad mode aperture in the bulkhead of the SMA 905 Connector.

ltem	Description	Price
OF1-WG305	Longpass filter; transmits light >305 nm	\$50
OF1-GG375	Longpass filter; transmits light >375 nm	\$50
OF1-GG475	Longpass filter; transmits light >475 nm	\$50
OF1-OG515	Longpass filter; transmits light >515 nm	\$50
OF1-OG550	Longpass filter; transmits light >550 nm	\$50
OF1-OG590	Longpass filter; transmits light >590 nm	\$50

Collimating & Focusing Mirrors

Another bench option is to replace the standard aluminum-coated reflective mirrors with our proprietary, UVabsorbing SAG+ Mirrors, which increase reflectance in the VIS-NIR and, in turn, increase the sensitivity of the spectrometer. SAG+ Mirrors are often specified for fluorescence. These mirrors also absorb nearly all UV light, which reduces the effects of excitation scattering in fluorescence measurements. Unlike most silver-coated mirrors, the SAG+ mirrors won't oxidize. See page 16 for a spectral graph illustrating SAG+ reflectivity. SAG+UPG-HR: \$250 $(\mathbf{0})$

If selected, an OF-1 absorbance filter is installed between the slit and the clad mode aperture in the SMA 905 bulkhead. The filter is used to block second- and third-order effects.

4 Collimating Mirror: specify standard or SAG+

The collimating mirror is matched to the 0.22 numerical aperture of our optical fiber. Light reflects from this mirror, as a collimated beam, toward the grating. Opt to install a standard mirror or a SAG+UPG-HR mirror.

5 Grating: specify grating

We install the grating on a platform that we then rotate to select the starting wavelength you've specified. Then we permanently fix the grating in place to eliminate mechanical shifts or drift.

6 Focusing Mirror: specify standard or SAG+

This mirror focuses first-order spectra on the detector plane and sends higher orders to light traps built into the optical bench. Both the collimating and focusing mirrors are made in-house to guarantee the highest reflectance and the lowest stray light possible. Opt for a standard mirror or a UV-absorbing SAG+UPG-HR mirror.

7 Detector with TE cooling

The TE-cooled, back-thinned, "2D" detector provides great signal processing speed, improved signal-to-noise ratio and great native response in the UV. It generates virtually no dark noise, allowing for long integration times.

8 OFLV Filters: optional

Our proprietary filters precisely block second- and third-order light from reaching specific detector elements.

Choosing a Grating & Wavelength Range

You choose from among 14 gratings for each spectrometer. With each grating, you consider its groove density (which helps determine the resolution), its spectral range (which helps determine the wavelength range) and its blaze wavelength (which helps determine the most efficient range).

- The **Groove Density** (mm⁻¹) of a grating determines its dispersion, while the angle of the groove determines the most efficient region of the spectrum. The greater the groove density, the better the optical resolution possible, but the more truncated the spectral range.
- The Spectral Range is the dispersion of the grating across the linear array. The spectral range (bandwidth) is a function of the groove density and does not change. When you choose a starting wavelength for a spectrometer, you add its spectral range to the starting wavelength to determine the wavelength range.
- For ruled gratings, the **Blaze** Wavelength is the peak wavelength in an efficiency curve. For holographic gratings, it is the most efficient wavelength region.

The **Best Efficiency** region is the range where efficiency is >30%. In some cases, gratings have a greater spectral range than is efficiently diffracted. For example, Grating #1 has a 650 nm spectral range, but is most efficient from 200-575 nm so wavelengths >575 nm will have lower intensity.

Grating Efficiency Curves are on the next page. (The HC-1 curve is on page 23.) All gratings are free with the purchase of a spectrometer, except for the HC1-QE, which is \$600.

Grating Number	Intended Use	Groove Density	Spectral Range	Blaze Wavelength	Best Efficiency (>30%)
HC1-QE	UV-NIR	300	200-950 nm	variable	200-950 nm
H1	UV	600	373-390 nm	300 nm	200-575 nm
H2	UV-VIS	600	365-390 nm	400 nm	250-800 nm
H3	VIS-Color	600	360-386 nm	500 nm	350-850 nm
H4	NIR	600	360-377 nm	750 nm	530-1100 nm
H5	UV-VIS	1200	180-193 nm	holographic: UV	200-400 nm
H6	NIR	1200	123-170 nm	750 nm	500-1100 nm
H7	UV-VIS	2400	63-90 nm	holographic: UV	200-500 nm
H9	VIS-NIR	1200	145-180 nm	holographic: VIS	400-800 nm
H10	UV-VIS	1800	83-123 nm	holographic: UV	200-635 nm
H11	UV-VIS	1800	66-120 nm	holographic: VIS	320-800 nm
H12	UV-VIS	2400	52-88 nm	holographic: VIS	250-575 nm
H13	UV-VIS-NIR	300	790 nm	500 nm	300-1100 nm
H14	NIR	600	360-370 nm	1000 nm	650-1100 nm

Back-thinned Area Detector

The QE65000's Hamamatsu S7031-1006 FFT-CCD area detector provides 90% quantum efficiency (defined as how efficiently a photon is converted to a photoelectron). The TE-cooled detector features low noise and low dark signal, which enables low-light-level detection and long integration times, thus achieving a wide dynamic range.

The S7031 is a 2D array, which allows us to bin pixels in a vertical column to acquire light from the entire height of the spectrometer's slit image. This improves light collection and signal-to-noise significantly. Because the detector is back-thinned (or back-illuminated), it has great native response in the UV and does not require the UV detector upgrade that we apply to other detectors.

In our spectrometers with linear CCDs, the slit's width, not its height, regulates the amount of light entering the bench because linear CCDs cannot efficiently collect the light from the entire height of the slit. But in the QE65000, the 2D area detector can better take advantage of the height of the entrance slit and the additional light, greatly improving system sensitivity.

Detector with OFLV Filter

The OFLV-QE is one of our Variable Longpass Order-sorting Filters used to eliminate second-order effects and is used with an HC-1 Grating in a 200-950 nm wavelength range system in a QE65000. We use patented coating technology to apply the filter onto the substrate of the detector's window.

OFLV-QE: \$250

WAVELENGTH (nm)

Detector Specifications			
Detector:	Hamamatsu S7031-1006 area CCD		
Detector range:	200-1100 nm		
Pixels:	1024 x 58 (1044 x 64 total); 24.6 µm square size		
Pixel area:	active area: 24.576 mm x 1.392 mm		
Pixel well depth:	300,000 electrons/well;		
	~1.5 million electrons/column sum well		
Sensitivity:	400 nm: 22 electrons/count;		
	250 nm: 26 photons/count		
Dark current:	4000 e ⁻ /pixel/sec @ 25 °C; 200 e ⁻ /pixel/sec @ 0 °C		

()

Grating Efficiency Curves

Below are the Grating Efficiency Curves for gratings with groove densities of 600, 1200, 1800 and 2400 mm⁻¹. See curves for all of our gratings at our website.

Predicted Ranges & Resolution

These graphs demonstrate the range and resolution of your "QE" Bench Spectrometer with a 5 μ m slit. See our website for more graphs of ranges and resolutions for every slit size.

 \bigcirc

 \bigcirc

NIR-series Near-infrared Spectrometers

3 Wavelength-Range Options

Our NIR-series Near-infrared Spectrometers provide full spectral analysis in real time and meet a wide variety of measurement needs. Three different NIR systems provide you with multiple wavelength ranges for measuring sugar, alcohol, moisture, fats and more. These small-footprint, plug-and-play systems provide a full spectrum in one millisecond, and offer optical resolution as low as 3.0 nm FWHM.

InGaAs Detector Cooled for Optimum Signal-to-Noise and Sensitivity

The NIR-series Spectrometers each feature a Hamamatsu InGaAs linear-array detector with onboard thermoelectric cooling. A thermistor monitors the array's temperature and a thermoelectric device can cool each array to 30 °C below ambient, keeping the array stable to within ± 0.1 °C. You can set and monitor the detector's temperature via software.

NIR512 Spectrometer: 900-1700 nm

The NIR-512 Spectrometer features a 512-element InGaAs linear-array detector. With the NIR-512, the only diffractive grating available is Grating N1, and it provides a 900-1700 nm wavelength range, producing an optical resolution of <5.0 nm FWHM.

NIR256-2.1 Spectrometer: 1200-2100 nm or 900-2100 nm

The NIR256-2.1 Spectrometer uses a 256-element InGaAs linear-array detector. With the NIR256 you have two grating options. With Grating N1, you have a 1200-2100 nm wavelength range. Grating N2 provides a 900-2100 nm wavelength range.

NIR256-2.5 Spectrometer: 900-2500 nm

The NIR256-2.5 Spectrometer extends farther into the NIR, acquiring real-time spectra up to 2.5 μ m. With the NIR256-2.5, you select Grating N2, which provides a wavelength range of 900-2500 nm.

Plug-and-Play USB Operation

All of the NIR-series Spectrometers interface to PCs via USB 2.0. When operating the spectrometer via the USB port, you have access to the spectrometer's EEPROM, where wavelength calibration coefficients and other data unique to your spectrometer are stored. SpectraSuite Spectroscopy Operating Software reads these values for easy setup and swapping among PCs. A 16-bit A/D converter is mounted with the spectrometer in the same housing. A 5 VDC wall transformer (included) is required. These systems also have a serial port for interfacing to PCs, PLCs and other devices that support the RS-232 protocol.

NIR-512:	\$14,995
NIR256-2.1:	\$19,999
NIR256-2.5:	\$21,995
SpectraSuite:	\$199

Specifications	NIR-512	NIR256-2.1	NIR256-2.5
PHYSICAL			
Dimensions (in mm):	153.4 x 105.2 x 76.2	153.4 x 105.2 x 76.2	153.4 x 105.2 x 76.2
Weight:	190 grams	190 grams	190 grams
DETECTOR			
Detector:	Hamamatsu	Hamamatsu	Hamamatsu
	G9204-512 InGaAs	G9206-256 InGaAs	G9208-256 InGaAs
	linear array	linear array	linear array
Detector range:	850-1700 nm	900-2100 nm	900-2550 nm
Pivels:	512	256	256
Pixel size:	25 µm x 500 µm	50 µm x 250 µm	50 µm x 250 µm
Pixel well depth:	187 000 000 electrons	187 000 000 electrons	187 000 000 electrons
Pixel well depth.	Nono	20/	50/
	NULLE	2 /0	570
	f/A 40 mm	f/4_40_mm	£/4 40 mama
Focal length.	1/4, 40 mm	1/4, 40 11111	1/4, 40 11111
Entrance aperture:	10, 25, 50, 100 or	10, 25, 50, 100 or	10, 25, 50, 100 or
	200 µm wide slits	200 µm wide slits	200 µm wide slits
	or fiber	or fiber	or fiber
Grating options:	Grating N1	Grating N1 and N2	Grating N2
Fiber optic connector:	SMA 905 to 0.22	SMA 905 to 0.22	SMA 905 to 0.22
	numerical aperture	numerical aperture	numerical aperture
	single strand fiber	single strand fiber	single strand fiber
SPECTROSCOPIC			
Wavelength range:	900-1700 nm with	900-2100 nm with	900-2500 nm with
	Grating N1	Grating N2;	Grating N2
		1200-2100 nm	
		with Grating N1	
Responsivity peak:	1.6 µm	1.95 µm	2.3 µm
Optical resolution:	With grating N1,	With grating N1,	With grating N2
	4.2-14.0 nm FWHM.	4.5-14.0 nm FWHM.	7.5-25.0 nm FWHM.
	slit dependent	slit dependent:	slit dependent
		with grating N2.	
		7 5-25 0 nm FWHM	
		slit dependent	
Signal-to-noise ratio:	4000·1	4000.1	4000.1
A/D resolution:	16 bit	16 bit	16 bit
Dark noise:	12 RMS counts	12 RMS counts	12 RMS counts
Dynamic range:	5×10^6 (system):	5×10^6 (system):	5 x 10 ⁶ (system):
Dynamic range.	5000:1 for a	5000:1 for a	4000:1 for a
	single equisition	single acquisition	single acquisition
Integration time:			1 to 20 million condet
Corrected linearity			
Corrected intearity.	299.0%	299.0%	299.0%
	00 pA @ 20 °C	120 pA @ -15 °C	2000 pA @ 15 °C
ELECTRONICS	0.4.0 51/50	0.4.0 EV/50	
Power consumption:	ZA@5VDC	3 A @ 5 VDC	2 A @ 5 VDC
Data transfer speed:	Full spectrum to	Full spectrum to	Full spectrum to
	memory every 10 ms	memory every 10 ms	memory every 10 ms
	with USB port	with USB port	with USB port
Trigger modes:	3 modes	3 modes	3 modes
Strobe functions:	Yes	Yes	Yes
COMPUTER			
Operating systems:	Windows 98/Me/	Windows 98/Me/	Windows 98/Me/
	2000/XP, Mac OS X	2000/XP, Mac OS X	2000/XP, Mac OS X
	& Linux with USB	& Linux with USB	& Linux with USB
	port; Any 32-bit	port; Any 32-bit	port; Any 32-bit
	Windows OS	Windows OS	Windows OS
	with serial port	with serial port	with serial port
Computer interfaces:	USB 2.0 @ 480	USB 2.0 @ 480	USB 2.0 @ 480
	Mbps; RS-232	Mbps; RS-232	Mbps; RS-232
	(2-wire) @	(2-wire) @	(2-wire) @
	115.2 K baud	115.2 K baud	115.2 K baud
Peripheral interfaces:	I ² C inter-integrated	I ² C inter-integrated	I ² C inter-integrated
. onpristal interfaced.	circuit: SPI (3 wire)	circuit: SPI (3 wire)	circuit: SPI (3 wire)

* Hardware allows integration times up to 32 seconds, but the detectors' dark characteristics do not support it.

NIR-series Near-infrared Spectrometers

 \bigcirc

Detectors

In the "NIR" Spectrometers, we offer three different InGaAs linear array detectors, one 512-element array and two 256-element arrays. The Hamamatsu detectors used in the "NIR" Optical Bench are InGaAs photodiode linear arrays with each pixel connected to a charge amplifier array consists of CMOS transistors. These detectors deliver high sensitivity and stable operation in the near infrared.

The detectors all include onboard thermoelectric cooling. A thermistor monitors the array's temperature and a thermoelectric device can cool

the arrays to 30 °C below ambient, keeping the array stable to within ± 0.1 °C. In addition, you can set and monitor the detector's temperature via software.

Fixed Entrance Slits

An option available with user-configured "NIR" spectrometers is selecting the size of the entrance aperture. Entrance slits are rectangular apertures, 1-mm tall and various widths from 10 μ m to 200 μ m, with the width determining the amount of light entering the optical bench. A slit is fixed in place; it only can be changed by our technicians. You can opt against having a slit, in which case the diameter of the fiber connected to the spectrometer determines the size of the entrance aperture.

A slit is installed on the inside edge of the bulkhead of an SMA 905 Connector.

Slit	Description	NIR-512 Pixel Resolution	NIR256-2.1 Pixel Resolution	NIR256-2.5 Pixel Resolution	Price
SLIT-10	10-µm wide x 1-mm high	~2.4 pixels	~1.2	~1.2	\$150
SLIT-25	25-µm wide x 1-mm high	~2.4 pixels	~1.2	~1.2	\$150
SLIT-50	50-µm wide x 1-mm high	~2.9 pixels	~1.5	~1.5	\$150
SLIT-100	100-µm wide x 1-mm high	~4.4 pixels	~2.2	~2.2	\$150
SLIT-200	200-µm wide x 1-mm high	~7.9 pixels	~4.0	~4.0	\$150

Grating Selection Chart & Grating Efficiency Graphs

Here are the Grating Selection Chart and the Grating Efficiency Curves for the two gratings available with the "NIR" optical bench.

Grating Number	Intended Use	Groove Density	Spectral Range	Blaze Wavelength	Best Efficiency
N1	NIR-512 or NIR256-2.1	300	900 nm	1000 nm	700-2100 nm
N2	NIR256-2.1 or NIR256-2.5	150	1600 nm	1600 nm	700-2500 nm

 $(\mathbf{0})$